
AD-R124 494 ADJUSTMENT OF DESIGN PARAMETERS FOR IMPROVED FEEDBACK 1/,t
PROPERTIES IN THE L..(U) ILLINOIS UNIV AT URBANA
DECISION AND CONTROL LAB R S MCEWEN MAR 82 DC-50

UNCLASSIFIED N98B±4-79-C-0424 F/G 12/1 NLIhIIIIIIIIE
IIIIIIIIIIIIIE
EIIIIIIIIIIII
lllllllllllllE

IIIIImlllIlllli



.2'N

- A

S ,MICROCOPY RESOLUTION TEST CHART

i - NATIONAL BUREAU OF STANDARDS-963-A

T'4"'



-
.A-. -..

4

4Y *4,4o~



UNCLASSIFIEDIISECURITY CLASSIFICATION OF THIS PAGE (When De Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

II. REPORT NUMBER .GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (nd Subtitle) S. TYPE OF REPORT a PERIOD COVERED

ADJUSTMENT OF DESIGN PARAMETERS FOR IMPROVED Technical-Repat,
FEEDBACK PROPERTIES IN THE LINEAR QUADRATIC . PERFORMING ORG. REPORT NUMBER
REGULATOR, R-941(DC-50) ;UILU-ENG-2207

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(e)

N00014-79-C-0424
ROBERT STANLEY MCEWEN

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

,,. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATEI.-'
March 1982Joint Services Electronics Program 3. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS(tf different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASS IFIED
ISs. DECL ASSI FI CATION/ DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

(-.

* -19. KEY WORDS (Continue on reverse side if necessary nd identify by block number)

Linear quadratic
Robust
Multivariable control
Singular value

20. ABSTRACT (Continue on reverie side If necesery end identify by block number)

Classical analysis and design methods for single input-single output (SISO)
systems, such as gain and phase margins, do not generalize easily to MIMO
systems. Recently, the singular values of the return difference and inverse
Nyquist matrices have proven useful in analyzing multiple input-multiple output(MIMO) systems. The linear quadratic formulation is useful for the design of
MIMO controllers. A disadvantage of this design method is that all the design
specifications must be incorporated into a quadratic cost functional. This

DD , ANIF, 1473 COITION OF I NOV 6 S OBSOLETE

"j-- SECURITY CLASSIF ICATION OF
r

THIS PAGE (W~hen Dote Enter'ed)



F UNCLASSIFIED* SCCURtTY CLASSIFICATION OF THIS PAOR(Whanu Data Eale~e.E)

ABSTRACT (continued)

-- thesis contains a systematic method for adjusting the quadratic cost to
manipulate the singular value functionals and the feedback properties and

* thus achieve the design requirements.

UNCLASSIFIED
SECURITY CLASSIFICAION OF THIS PACKE(Wft DOW Entetad)



UILU-ENG- 82-2207

ADJUSTMENT OF DESIGN PARAMETERS FOR IMPROVED FEEDBACK
PROPERTIES IN THE LINEAR QUADRATIC REGULATOR

by

Robert Stanley McEwen

This work was supported by the Joint Services Electronics Program under

Contract N00014-79-C-0424.

*:. Reproduction in whole or in part is permitted for any purpose of the

United States Government.

'a.

Accession For

NTIS GRA&IDTIC TAB
Unannounced

Approved for public release. Distribution unlimited. Justification

By-

Distri b-h.ton/

AV~i1r'bi11tV Codes
Avni1 nnd/or

Dist Special

. . . . . . . . .



ADJUSTMENT OF DESIGN PARAMETERS FOR IMPROVED
FEEDBACK PROPERTIES IN THE LINEAR QUADRATIC REGULATOR

BY

KROBERT STANLEY MCEWEN

B.S., Purdue University, 1978

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1982

Thesis Adviser: Professor Douglas P. Looze

Urbana, Illinois

t'.

• ' -.' -.-. -.I.- . -- ....-. .- , -.: :- ., ° . . i : ." i - -



-": iii

TABLE OF CONTENTS

Page

1. INTRODUCTION ........................................................ 1

2. SINGULAR VALUES IN CONTROL THEORY ................................... 7

2.1. The Singular Value Decomposition and Near Singular Matrices ... 7
2.2. Singular Values in Control Theory ............................. 10
2.3. Linear Operators and the Lyapunov Equation .................... 22
2.4. The Differential .............................................. 26

3. ADJUSTMENT OF CONTROL SYSTEM PARAMETERS USING SINGULAR VALUE
SENSITIVITIES ....................................................... 33

3.1. Loop Shaping in the Frequency Domain for MIMO Systems ......... 33
3.2. General Sensitivity Formulas .................................. 39
3.3. The Linear Quadratic Problem .................................. 43

4. APPLICATION........................................................ 64

5. CONCLUSION .......................................................... 86

REFERENCES .............................................................. 90

ti%

'. .



r :' '2 ,-_., .
'" 

- --;.' -.-:." " :. -_
" 

- - ,"-. . . . . . . . . . . ..-......- - ,L o - - - - - , - - ,..' . ".- - '° "- -

1. INTRODUCTION

" . A major problem in the application of control theory is the fact

that any mathematical model used for design or analysis is only an approxi-

mation to the true physical system. The error between the mathematical

model and the system itself (or plant) has many causes. For example, coef-

U: ficients that are assumed constant in the model may in reality be time

varying. Also, the system may be too complex to be accurately described by

a mathematical model that is feasible for design and analysis purposes.

#. This is usually the case since a feasible model is typically restricted to

be linear, time invariant, and finite dimensional.

Consequently, it is important to be able to design a controller so

that the plant model-controller system (or nominal system) is as tolerant to

plant variations as possible. This tolerance is important in two ways.

First, the nominal system must remain stable under the expected range of

plant variations. This system quality is often referred to as the robust-

ness of the system. Second, the input output (I/O) characteristics of the

- nominal system should be as insensitive as possible to these variations. The

nominal system is said to have good sensitivity properties if the effect of

V! these variations on the I/O response is reduced from the effect on the plant

alone.

The field of control theory is based upon the fact that feedback

can be used to improve these and other important system qualities [1],(2].

For example, the effect of uncontrollable plant disturbances on the output

of the plant can be reduced by feedback. Feedback controllers can also be

I.
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used to achieve a desirable I/O response, although this in itself does not

necessarily require feedback [3].

The synthesis of closed loop controllers for single-input single-

output (SISO) systems with these properties is well understood. Root locus

plots, Nyquist diagrams, and other classical frequency domain techniques are

readily used for design. The Nyquist diagram is particularly helpful since

the distance from the Nyquist locus to the critical point (called the return

difference function) provides a measure of the disturbance rejection and

command following properties as a function of frequency. In addition, when

the plant uncertainties are modeled by additive perturbations the return

difference function is also a measure of robustness and sensitivity. When the

uncertainties are modeled by multiplicative perturbations, the distance of

the inverse Nyquist locus from the critical point provides this measure.

Unfortunately, these well-tested design techniques for SISO systems

do not have an easy generalization to multiple-input multiple-output (MIMO)

systems. Several problems unique to MIMO systems arise. For example, mani-

pulations with transfer function matrices are more difficult since matrix

multiplication is not commutative. Thus robustness and sensitivity margins

are dependent on where the perturbation is inserted in the loop. Also, the

perturbations not only have a fequency dependence, but a spatial dependence

as well. In other words, uncertainties may occur only in certain loops.

Despite these problems, some useful generalizations of the

classical theory to MIMO systems have recently been made (4-7]. These

generalizations involve the return difference matrix or the inverse Nyquist

matrix (these are the MIMO counterparts of the scalar functions). For

example, when the return difference matrix of a nominally stable,



, 3

additively perturbed system is singular at some frequency, it means that a

zero pair of the characterisitc equation lies an the imaginary axis. Thus

for all stable additive perturbations that are smaller than the smallest

perturbation that causes singularlity, the system will be stable. Hence the

distance of the return difference matrix from singularity provides a measure

of the stability margin of the system under stable additive perturbations.

This is a direct generalization of the SISO case where the distance of the

Nyquist locus from the critical point represents the degree of stability,

which is measured by the classical gain and phase margins. Furthermore, it

can be shown that the return difference and inverse Nyquist matrices also

reflect the sensitivity, disturbance rejection, and I/O properties of MIMO

systems.

When the standard Euclidean coordinates and corresponding norm are

used to describe the system, this distance from singularity can be conve-

niently computed in terms of matrix singular values. Several singular value

inequalities for robustness and sensitivity under additive or multiplicative

perturbations are available [8].

", The design requirements on robustness, sensitivity, disturbance

rejection and I/0 response translate into bounds on these singular value

curves (as functions of frequency). Thus a major design objective is to

synthesize a controller that adjusts the singular value curves of the return

difference or inverse Nyquist matrix into some desirable shape. If the

mathematical structure of the controller is predetermined, it is possible

to calculate the gradient of these singular values with respect to the

adjustable parameters of the controller (or control parameter vector). The

gradient will be a function of the control parameter vector and frequency.
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Given an initial control parameter vector and a constant frequency, the

gradient indicates how to change the initial control parameter vector to

have the greatest possible effect on the singular value curve at that

frequency.

In order to deform the entire singular value curve to fit specifi-

cations, it will generally be necessary to follow an iterative select-

evaluate-adjust design procedure. Each time a new control parameter vector

is selected, the singular values must be analyzed. If the singular values

are not satisfactory, the gradient can be recalculated at the frequency of

• 5interest, and the control parameter vector readjusted. Then the singular

values are analyzed again, and so on.

.The success of the design depends on the capability of the designer.

to use the gradient information along with his insight into the particular

system to determine how to adjust the parameter vector to set the desired

effect on the closed loop system. This design method is obviously highly

dependent on the particular problem under consideration. However, if the

designer is using a standardized synthesis method at each design iteration

to adjust the controller, such as the linear quadratic (LQ) design method,

the gradient computations can be formulated explicitly.

The solution of the full state feedback LQ problem is a constant

gain feedback matrix that optimizes a cost functional which contains weighted

quadratic state and control terms [9]. These weights are the choice of the

designer, and determine the feedback gain matrix. An advantage of the LQ

desl i metho" a that it provides a systematic, numerically feasible method

for ch.c;,ing a feedback gain matrix with relatively small gains (if all of

the state weights are set to zero then the minimum energy regulator solution

. ..
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results). By scaling these weights the LQ method can be used for approxi-

mate pole placement [10]. Also, the LQ loop has inherently good robustness

and sensitivity properties [11],[12].

A disadvantage of the LQ design is that it is not directly obvious

how to choose these weights to achieve a given set of design specifications.

In particular, it is not at all obvious how to choose these weights to alter

the singular values of the return difference and inverse Nyquist matrices,

and thus affect the robustness and sensitivity properties of the system.

In this thesis, explicit formulas for the gradient of the singular

value functionals of the return difference and inverse Nyquist matrices are

derived for the LQ problem. This gradient information can be used iteratively

to tune the state and control weights to shape the singular values as a

function of frequency and thus obtain desired robustness and sensitivity

properties.

In Section 2, basic properties of singular values are reviewed.

then the applications of singular value analysis in control theory such as

multivariable Bode plots and robustness-sensitivity bounds are discussed.

-- The Lyapunov operator is defined, aad the differential and gradient concepts

are reviewed. Sensitivity formulas for the eigenvalues and singular values

of a matrix are developed.

Section 3 contains a discussion on MIMO loop shaping in the fre-

quency domain, and how desirable system properties translate into require-

ments on the smallest singular value of the return difference matrix and the

inverse Nyquist matrix. Following this, general sensitivity formulas for

these singular value functionals are derived, and an iterative design method
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is proposed for manipulating these functionals. This theory is then applied

to the LQ problem to obtain specific results.

Finally, Section 4 presents an example application of the method

developed in Section 3. The design method of Section 3 and an asymptotic

design method are compared. Section 5 summarizes the thesis and discusses

further research possibilities.

*1

E.!
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2. SINGULAR VALUES IN CONTROL THEORY

In this section the basic background needed for the presentation

of Section 3 is reviewed. Singular values and their role in the analysis of

robustness and sensitivity of feedback systems are discussed in general.

Vector space and gradient concepts are reviewed as a preliminary to dif-

*ferential eigenvalue and singular value formulas.

2.1. The Singular Value Decomposition and Near Singular Matrices

In control theory it is often desirable to measure the nearness to

singularity of a matrix. The following theorem provides such a measure.

Theorem 2.1: Suppose that A and AA are nxn matrices, and that the inverse A

exists. Then, the inverse

(A+ AA)- (2.1)

* exists if '--
Ii A < A 1 (2.2)

where 1 .1 is the standard induced Euclidean norm. 0

*? Proof: (13].

The matrix AA is an arbitrary additive perturbation. Since the

*i inverse in equation (2.1) will exist for every perturbation that satisfies

equation (2.2), the magnitude of the functional IA-I -I indicates how sensi-

tive a matrix is to changes in its entries. For example, if the value of

I is small, then a small change in an element of A could cause

singularity.

Notice also that equation (2.2) is only a sufficient condition. This

means that the matrix A+ AA may or may not be singular for a given pertur-

bation that violates equation (2.2).

U, . . ~ * * - * - * - - - .

* ... ..-.. . . . .
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*A singular value of an arbitrary complex valued mxn matrix A is

,.,' denoted by ai(A), and is defined by

a (A) (AHA) (2.3)

for each
. ."i -l,... ,

where
X min(m,n}.

Here, Ai(.) is the ith eigenvalue of the indicated matrix. Notice that

singular values are defined for nonsquare matrices in general. Also, singular

values are always nonnegative real numbers since any positive semidefinite

hermitian matrix has eigenvalues that are real and nonnegative.

mxnTheorem 2.2: Any matrix AGC of rank X has a singular value decomposition

given by

A UZVH (2.4)

where UE C mX and VC Cnx. are unitary matrices and where

Z - diag{ao 2, ...',a} (2.5)

with
a a1  (2.6)

Proof: [13].

From equation (2.4),

H 2
A AV -VZ (2.7)

• .. Hence the columns of V are orthonormal eigenvectors of the hermitian matrix
AH
A A. These vectors are denoted v, and are called the right singular vectors.

By convention, the vi in equation (2.7) are ordered so that inequality (2.6)

is satisfied. Also from equation (2.4),

9--
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AA1  u 2  (2.8)

The columns of U are denoted u~ and are termed the left singular vectors.

Some useful properties of singular vectors are given below.

Corollary 2.3:

(1) The right and left singular vectors are related by

Avi a a
H (2.9)

nxn -
(2) If A is invertible, where Ae C ,then the singular values of A7 are

related to those of A by

oa ) 1' il...,n. (2.10)
i CF +l1±(A)

(3) The induced Euclidean norm is given by

I ANl a a(A) . (2.11)

*Proof: (13].

Property (2) allows Theorem 2.1 to be interpreted in terms of

singular values. Equation (2.2) is equivalent to

-1-

6A)< a(A) (2. 12)

* where

(2.13)

Inequality (2.12) plus the fact that there exists a perturbation AA such

that u(AA)- o(A) and A+ AA is singular means that the smallest singular value

Sof a matrix is the distance from that matrix to the nearest singular matrix.

(2 . .. ) . .
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2.2. Singular Values in Control Theory '

Suppose that P*(Jw) is a mxn rational transfer function matrix of

a multiple input-multiple output (MIMO) linear system, with

y(JW) - P(jW)u(jW) yeCn, U6Cm. (2.14)

Then, it has been shown (14] that for all w, 2
IY(O )l

E(P*(Jw)) <. < U(P*(jW)) (2.15)
;' " Iu(jw )Il

uhere U(P*(Jw)) is the least upper bound and a_(P*(jw)) is the greatest lower

bound of the above vector ratio.

If we let Hu(jw)- 1, then the output ly(jw)I is bounded between

the two singular values at.a given w for any input direction. A frequency

plot of these singular valhies can be regarded as the MHIMO generalization of

a single input-single output (SISO).Bode magnitude plot (see Figure 2.1).

The interpretation of a Bode magnitude plot as a rms sinusoidal

power gain curve also carrys over to the MIMO case [15]. Suppose that an

input

u(t) u Cos Wt

(where u is a vector of constants) is applied to the system of equation (2.14).

The sum of the mean squared power of each input signal is

SMSPI fw f T(t)u(t)dt u T U.
27r 0 2

The sum of the mean squared power of the outputs

"21r

2w4
%' f YT (t)yss(t)dtii! s s~~o - ss( ss-:

::[ i 0
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where y(t) is a vector of steady state (sinusoidal) outputs. Then, the

ratio of mean squared power out to mean squared power in is bounded by the

" " squares of the singular values of P*(Jw) for every input direction u

-":< -SMSPO 2:
!(P* (j)) 2 < < 3(p*(Jw))

.-Singular values have another extremely important interpretation in

the robustness analysis of MIMO systems. A closed loop feedback system is

said to be robust if it remains stable when the true plant, P(jw) varys from

the nominal model P*(Jw) that was used to design the feedback controller.

This difference between the real plant and the mathematical repre-

"'. sentation can be modeled in many ways. Three models which have proven useful

: for analysis are:

(1) Additive perturbations

P(jW) - P*(Jw) + APA(JW) (2.16) IA
where P(jw) is the true plant, P*(Jw) is the nominal model, and APA(OW)

is an unknown quantity.

(2) Multiplicative input perturbations

P(jw) - p*(Jw)(I + AP(0)). (2.17)

" . (3) Multiplicative output perturbations

- P(jW) (I+AP M(Jw))P*(Jw). (2.18)

Bounds expressed in terms of singular values have been derived

that relate the nominal plant to the magnitude of the perturbation that can be

tolerated before stability is no longer assured. Consider the case of additive

perturbations (see Figure 2.2) where P*(Jw) is an mxn nominal plant transfer

function, and K(jw) is the nxm controller.

V .
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Theorem 2.4: Assume:

(1) P*(Jw), APA(jw), and K(jw) are rational transfer function matrices

(2) APA(J) is stable.

(3) The nominal closed loop system (APA(jw)- 0) is stable.

Then, the closed loop system described by solid lines in Figure 2 is stable

for all APA(j w) which satisfy,4

o(I+P*(JW)K(jw)) > (APA(j w))j(K(Jw)) (2.19)

for all wE R.

Proof: [15]. 0

The utility of this theorem lies in the fact that only knowledge

of the norm of the perturbation matrix is required to ensure stability.

Equation (2.19) can also be interpreted geometrically as.a generali-

zation of the Nyquist criterion for SISO systems. The left hand side of

equation (2.19) is analogous to the distance of the SISO Nyquist locus from

the critical point -1+JO in the complex plane (15].

A similar theorem holds in the case of multiplicative perturbations.

Consider the system in Figure 2.3.

Theorem 2.5: Assume:

(1) P*(jw), APM(jw), and K(jw) are rational transfer function matrices.

(2) APM(jw) is stable.

(3) The nominal closed loop system (APM(jw)- 0) is stable.

(4) det{P*(Jw)K(jw)} 0.

Then the perturbed system is stable for all PM (jw) which satisfy

S(I+ -P*(Jw)K(Jw) > 6(4P Ow)) (2.20)

for all wiejR.

Proof: [4]. 0
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Here, the robustness is measured with respect to the inverse

Nyquist matrix I+ [P*(Jw)K(jw)]- rather than the return difference matrix

as in equation (2.19).

It is important to be aware that equation (2.20) is valid only

for perturbations that are at the output of the plant, as shown in Figure 2.3.

If the perturbation was applied at the input of the plant (the positions of

P*(Jw) and I+ PM(Jw) would be reversed in Figure 2.3) equation (2.20)

becomes
: o(I+ [K(Jw)P*(Jw)]-I > U(ApM 00))_

where the matrix K(jw)P*(Jw) is nxn rather than mxm. For the sake of con-

sistency, all of the following theorems in this section will deal with

output perturbations. Results for input perturbations are similar and can

be derived from the references given for each theorem. ri

The above theorem shows how multiplicative perturbations impose

limits on the size of the closed loop bandwidth wB* (We define the bandwidth

of a MIMO system as the frequency at which the largest singular value of the

transfer function matrix drops to i// of its zero frequency value.) The

relation

,(If+ [P*(Jw)K(j) -  P*(Jw)K(jw)[I+P*(Jw)K(jw)] " I  (2.21) 1

plus equation (2.10) implies that the smallest singular value of the inverse

Nyquist matrix is just the reciprocal of the largest singular value of the

transfer function matrix. At frequencies where large multiplicative per-

turbations are possible, the above theorem requires that

.t.. . . ...... ,,, J . ... ,n. ,, ".... . : - , ." - -" :-: . .
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2.(1+ (P* (j W) K(j) W)

be large, and hence

(P*(JW)K(J) [I+ P*(JW)K(j) ]-1)

be small.

The effect of modeling uncertainties and parameter variaticns on

input-output response in MIMO system can also be measured in terms of

L osingular values. One way to do this that provides a logical generalization

of the SISO case is to define a nominally equivalent open loop system, and

then deduce conditions that require the output of the closed loop system to

(.*.. be less sensitive to perturbations [5]. Consider the system described by

solid lines in Figure 2.4 where

K (jw) - K(j)(I+P*(jW)K(j))- (2.22)K0

Comparing this open loop system to the closed loop system of Figure 2.2,

we see that when APA(jw) -0 the two systems will respond identically for

any given input U . For the case APA(Jw) - 0, yo(jw) will denote the output

of the open loop system, and yc will denote the output of the closed loop

" system. When AP (jw)$ O, these outputs will be denoted by y'(Jw) and y'(Jw).

The open loop and closed loop errors are defined by

e (jw) - yo (jw) - yo(W)
0 0 (2.23)

ec(JW) - yc(iW) YcOW).

The open loop and closed loop systems can be compared through the

mean squared errors, which are defined to be
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Jo- f ce (t) 2dt
0

(2.24)

fcle W I(t) 2dt
0

where e (t) and e (t) are the inverse Fourier transforms of equation (2.23).
0 C

Theorem 2.6: Suppose:

* (1) K(jw), P*(Jw), and AP (jw) are rational transfer function matrices.
A

(2) APA Ow) and (I+P*(Jw)K(jw)) are stable.

AAS(3) The perturbed system of Figure 2.2 is stable (i.e. AP A (j) satisfies•

equation (2.19)).

If APA(jw) satisfies

"a(I+P*(Jw)K(jw)) > U(APA(jw))6(K(jw)) + 1 (2.25)

for all w in some interval ., and u (Jw) 0 for all w..d, then

J _J. (2.26)

c

Proof: [8].

When the conditions of this theorem are satisfied, the output of the

closed loop system in Figure 2.2 will be less sensitive to additive pertur-

bations than the output of the equivalent open loop system. Under these

conditions, feedback has a desensitizing effect.

The sensitivity condition (2.25) is remarkably similar to the

stability condition (2.20). Indeed, if a system has good sensitivity pro-

perties under additive perturbations, it must necessarily also have good

stability margins under additive perturbations in the frequency band J.

A similar result holds for multiplicative perturbations. Consider

the multiplicatively perturbed systems in Figures 2.3 and 2.5, with errors

-* defined as in equation (2.23).

. . . . . .



20

0~0

It

r-4

0
01

-U

'-4

rz



21

Theorem 2.7: Suppose

(1) APM(jw), P*(Jw), and K(jw) are rational transfer function matrices.

. (2) APM(jw) and (+ P*(Jw)K(jw))-1 are stable.

(3) PM(jw) satisfies equation (2.20).

(4) det{P*(Jw)K(jw) } $ 0.

If 6PM(jw) satisfies

a(I+ [P*(Jw)K(jw)]-I) - (AP(jw)) + U([P*(Jw)K(jw)]-1) (2.27)

for all w in some interval J, and u (jw) = 0 for all wJ, then
c

jc jo

Proof: [8]. "

Since 6([P*.Jw)K(jw)] -1) is a nonnegative numbk:, we again see

that good sensitivity properties of a multiplicatively perturbes system imply

*.i good stability margins (see equation (2.20)) for we...-

Also, the sensitivity conditions (2.25) and (2.27) need only be

satisfied in a finite bandwidth. The robustness conditions (2.19) and

(2.20) must be satisfied for all w.

Another important fact is the the robustness sensitivity theorems

for additive perturbations (Theorems 2.4 and 2.6) are conservative. For

example, there does not necessarily exist a destabilizing APA(jw) which will

satisfy equation (2.19) with equality. However, if additive perturbations are

considered in the configuration indicated by the dotted line in Figures 2.2

and 2.4, the bounds (2.19) and (2.20) are not conservative.

S.,
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2.3. Linear Operators and the Lyapunov Equation

It is easily demonstrated that the collection of all m n complex

mxnvalued matrices (C x ) is a linear vector space. A useful inner product on

this space is

(M1,M2  = tr{Ml,M 2} , MI,M 2 G mn. (2.28)

The natural norm associated with this inner product is the Frobenius norm

M, M t r NM }
"1 1

n n Ii 1
- E tmI (2.29)

i=l J lii

AIIM 1 F
- nl F"

A vector space is complete under a given norm if every Cauchy

sequence of vectors in the space converges to a vector which is also a member

of the space. A complete, normed, linear vector space is a Banach space.

If, in addition, an inner product which induces the norm is defined, the space

is a Hilbert space. Under the inner product defined in equation (2.28).

Cmxn is a Hilbert space.

A concept that will be useful later is cartesian product Hilbert

space. A cartesian product of two Hilbert spaces is a collection of all

ordered pairs consisting of one vector from the first space and one vector

from the second. For example,

S A Cmxn X mxm (2.30)

* is a cartesian product space. An element of this space is written

(M,N), ME Cmx , Ne Cm xm .

U? ., E,

!:.9-.
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An inner product is defined on a Cartesian product space by adding

the inner products from each constituent space. For example, the inner

* product on S is

(MINI),(M2 ,N2)) (M1,M2 ) + (N1,N2)

tr{M2 + tr{NH-N (2.3)
4M±2 + 1 2 (.1

Under this inner product the Cartesian product of two Hilbert spaces is

itself a Hilbert space.

The concepts of operators and adjoints will be useful in the

derivation of the gradient in the following section. Suppose 4:.% -tJ is a

linear operator where-.X.and iare inner product spaces. If there exists

another operator a* : .- , that satisfies

(y,J(x)) - 4'j(y),x , VxG..Z, yeit• (2.32)

then 4* is called the adjoint of -.. When -- and It are Hilbert spaces,

the adjoint always exists and is unique. The adjoint operator has the

following properties [16]:

(1) The adJoint operator J* is linear.

(2) If - has an inverse - then

J (A (2.33)

It will be of interest to us to examine the Lyapunov equation in

the context of operators and adjoints. First, recall the following funda-

mental properties of the Lyapunov equation.

Theorem 2.10: Consider the Lyapunov equation

KA + AHIK + Q -0 (2.34)
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where
'--'" ':' A ,K ,Q = C n x

and A is stable (i.e. Re{Xi(A)}>0, i-l,...,n). Then

(1) For any QE Cnxn there exists a unique solution KG cn xn.

(2) If Q is Hermitian then K is Hermitian.

(3) If Q is positive semidefinite then K is positive semidefinite.

Proof:

(1) [17]

(2) This follows directly from (1).

(3) [17]. 0

Since the Lyapunov equation assigns a unique solution K to every

input Q, it can be thought of as an operator that maps from C to C

Define the linear operator L as
A

LA(K) _ A K + AK (2.35)

where A is always assumed to be stable. Equation (2.34) is then equivalent to

L (K) - -Q. (2.36)
A

This linear operator has several very useful properties. First,

it follows from Theorem 2.10 that LA() is one to one and onto. Therefore
A

an inverse Lyapunov operator exists and is linear. It will be denoted LA()-

where

-1L (Q) - -K. (2.37)

nxn
Second, since C is a Hilbert space under the inner product defined in

equation (2.28), the adjoint operator of LA(.) exists.
A
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Theorem 2.12: Consider the linear operator L on the Hilbert space C
nxn

A

with the inner product defined in equation (2.28). Then, the adjoint

operator L*(.) is given by

L LH(.). (2.38)

Proof: From equations (2.28) and (2.32) we have

(Y,L (K)> - tr{YLA(K)}, Y,Ke C€n n .

A A

By the definition of LA.

(Y,LA(K)> - tr{YH(KA+ AHK)} r

- tr{YHKA} + tr{YHAR }.

Using elementary trace properties,

(Y,LA (K)) = tr{AHKHY} + tr{KHAY}

Hy H H
= tr{KHyAH} + tr{K AY}

H H
- tr{K (YA +AY)}

M tr(K
- tr{KL H(Y),

A- (K,LAH(Y)>)--

which implies LA(-)*nL H(.) by equation (2.32).sA A

Another concept which will be useful in the next chapter is the

square root of a matrix. A matrix M is a square root of a symmetric matrix

Q whenever

T
MM- Q. (2.39)

Under certain conditions, the square root M will always exist, although it is

in general nonunique.

* - ll ~~-'.* - - -i
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Theorem 2.13: Suppose that Q is a nxn real, symmetric, positive semi-

definite matrix with rank m. Then there exists a mxn square root...

Proof: Straightforward. 0

Observe that if Q has an mxn square root M, then there will be a 1xn square

root for every £>m.

Finally, the following result pertaining to differentiable matrices

is necessary for the derivations in the next chapter.

Theorem 2.14: If V(t) is an nxn matrix whose entries are real valued,

differentiable functions of t, and the inverse V (t) exists for all t, then

V (t) - -v (t)V(t)v-l (t). (2.40)

Proof: The proof is obvious from the fact that

V(t)v-l(t)- I

and the product rule for differentiation. O

2.4. The Differential

The concept of the scalar differential can be extended to operators

and vector spaces. Suppose that

- It. (2 .41)

where _Y and are Hilbert spaces. If there is an operator 6J (x;Ax) that

is linear and continuous with respect to Ax(-%, and if 6J (x;Ax) satisfies

im 1A ~ IXI -0 (242

then 6S(x;Ax) is the Frechet differential of .7 at x in the direction Ax.

. .
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UNotice that the differential assigns a vector y to every ordered pair

(x,Ax),

61 : Jx4 T X (2.43)

Since d(x;Ax) is linear in Ax, it can be written (for each xe.X.),

6 .(x;Ax) = Z'(x) x (2.44)

where J" is a bounded linear operator that depends'on x,

r •:A' B (,Z,4) .

Here, B(C%,tj) denotes the space of all bounded linear operators from.Z to 1.

. is called the Fr~chet derivative of % at x.

Many of the properties of scalar derivatives extend to Frdchet

derivatives, such as the familiar chain rule.

Theorem 2.16 (Chain Rule): Suppose that A and JC are operators

(2.45)

where ., ., . are Hilbert spaces. Suppose further that the Frdchet deriva-

tive .' exists for all x6-fo and that C' exists for all yEt. Then, the

operator

3- ', : . . (2.46)

has a Frdchet derivative given by

Proo) f :) (() W ( (2.47)

SProof: [16]. 0
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The chain rule also applies to Frdchet differentials. It follows

from equation (2.47) that the differential of the composite operator in

equation (2.46) is

63C*.(x;Ax) - 6C(.(x) ;6 (x;Ax)) (2.48)

where 3C and - are under the same assumptions as in the theorem.

The geometrical interpretation of the Frdchet differential is

similar to that of the scalar differential. Equation (2.42) is equivalent to

saying that for all e> 0, there exists 6(e) > 0 such that if lAx < 6(E), then

(x+x) -J) W 6J (x;Ax) I < Ct Ixll.

Since

." t(x+Ax) -A(x)U - 16.(x;Ax)II < Ij(x+Ax) -a(x) -6j(x;Ax) I

we can see that for small lAxi, the magnitude of the differential is approxi-

mately equal to the magnitude of the change of c (x) in the Ax direction.

The differential, then, can be interpreted as a sensitivity function.

In the case of functionals, this concept can be carried further.

First, recall that a functional is an operator that maps a vector space

into the real line,

f . R. (2.49)

* Theorem 2.15 (Riesz Frdchet): If g is a bounded linear functional on a

Rilbert space ., then there exists a unique vector h in .14 such that for

all xe-4,

g(x) - (h,x)

with

IgN - ihi

. . .
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where IgO is the induced functional norm,

g sup {lg(x)I}.l xi =1

Proof: [16]. 0

The true power of this theorem is that it applies in infinite

dimensional spaces. In this thesis we will be concerned primarily with finite

dimensional Euclidean vector space. However, the above theorem is still

useful because it provides a means of calculating the gradient through the

differential.

Consider the functional f, as in equation (2.49), over a Hilbert

space_.4. Since the differential 6g(x;Ax) is linear in Ax, the Reisz-Frdchet

theorem guarantees that there exists a vector V f such that

6f(x;Ax) - (V f(x),Ax) (2.50)x

where V f(xo ) denotes the gradient of f with respect to x at the point x.x o
Recall that the gradient is a vector that points in the direction of maximum

increase of f at xo, and whose magnitude is equal to the value of the

directional derivative in that direction.

Equation (2.50) also provides another geometrical interpretation

of the differential. When lAx- -1, the differential is just the gradient

projected in an arbitrary Ax direction. In this case, the differential is

equal to the directional derivative. This suggests a way to calculate the

differential.

Theorem 2.16: If the Frdchet differential of the functional in equation

(2.49) exists, then it is unique and is given by
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6f(x;Ax).- f(x+eAx) I (2.51)

Proof: [16]. 0

These results have a straightforward generalization to Cartesian

product Hilbert space.

Corollary 2.17: Suppose f(xy) is a functional over a Cartesian product

Hilbert space,

f :'Zx 4 + R. (2.52)

If the Frdchet differential of f exists, it is given by

-6f((xy);(xAy)) 6f(x,y;ax) + af(x,y;Ay) (2.53)

where each of the differentials on the right hand side of the above equation

is computed according to equation (2.51).

Proof: The proof follows from Theorem 2.16. 0

Equation (2.50) can also be extended. The Riesz-Frdchet theorem implies

"f((x,y);Ax,Ay)) - ((V xf,V yf),(Ax,Ay)) - (Vxf,Ax) + (V f,y) (2.54)

-*where this last equality was from equation (2.31).

An application of Frdchet differentials that will be important in

*-..the development of this thesis is the sensitivity of eigenvalues and singular

values with respect to a parameterization of a matrix. The following two

theorems provide formulas for these sensitivities.

Theorem 2.18: Consider the real nxn matrix A(c) whose elements are Frdchet

differentiable functions of the vector a,

n nxnA eR ,xn n (2.55)

ii ..-. -. .. .. . . . , ... . -. . . . , . .. .. . . .. . . . . . .
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If Xi(a) is a distinct eigenvalue of A(a) with right eigenvector v (0) and

left eigenvector w (a) then

i

d ;Aa) - .ac0A(a;Ac)v (a) (2.56)
" w(a)v i (a)

Proof: [18]. 0

Although A is a matrix, it is not considered here in the usual sense of a

linear operator. Each entry of A is a possibly nonlinear functional of the

vector a, and hence A(-) is a nonlinear function from Rn into Rnxn .

Note that the hypothesis X distinct is imposed in the above

. theorem because for nondistinct Xi, the left and right eigenvectors can be
H.-

orthogonal, that is, w (a)vi() - 0.

An analogous theorem holds for singular values.

Theorem 2.19: Consider the matrix A(a)-as in equation (2-.55). If a.(a) is a

distinct nonzero singular value of A(a), then

H
--r (a;Aa) Re{u (a)6A(c;Ac)v (01 (2.57)

' where u (a) and v (a) are the left and right singular vectors that correspond

to ai(a).

Proof: From equation (2.3)

(a ) - X H(A (a)A(a ) ) .  (2.58)

Applying the chain rule (equation (2.48)) and equation (2.46),

H HwH(a)d[AH WAWO]v i (a) ':

2aI (a)6ai (a;Aa) - A (2.59)w (a)v (a)

Here, w (a) and v (a) are the left and right eigenvectors of the matrix

"o~
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A H W~A(c*). Since w~ Hcivj(i) is in the denominator, we have

Hw (al)v (ai) #0 a (a) is distinct.

i ii

H

(2) v i vi 1.

Hence, H~av

Applying the product rule on the right hand side of equation (2.59)

HHH
5A (c)A(a)] - 6AH(ct;&c)A(ca) + AH(ct)d~a~;6ac).

Substituting this and equation (2.60) into equation (2.59),

2a (ca)6a (a;At) H (a(Ha)A ;a) 6Ha;aA)v (2.61)

From equation (2.9),

2a 6a (L;At) a a uH()AaA~ (a) + v H 6AH(a;Aac)uiWa o(az)

where u (at) is the left singular vector of A(ca). Then,

i

2a 6a (ct;Aa) a a(U H6A(ct;Aa~v + HU HAaA~

H
-2a Re{u 6A(c&;ac)v 1.

Dividing each side by 2a 1 (ai) yields equation (2.57). 0

In the a~ nondistinct case, the singular vectors will be nonunique.

However, it can be shown (19] that there exists u1 in the left singular

vector subspace and v i in the right singular vector subspace such that

equation (2.57) holds.
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3. ADJUSTMENT OF CONTROL SYSTEM PARAMETERS USING
SINGULAR VALUE SENSITIVITIES

The purpose of this section is to develop a method for modifying

control system designs to satisfy singular value inequalities. First, the

translation of desirable closed loop MIND system properties into requirements

on the singular values of the return difference matrix, the loop transfer ma-

trix, and the inverse Nyquist matrix is discussed. Then, general sensitivity

formulas for these important functionals are derived. A control parameter

adjustment method for manipulating the frequency shapes of these functionals

is proposed. This theory is then applied to the linear quadratic (LQ) problem

to obtain specific results.

3.1. Loop Shaping in the Frequency Domain for MIM Systems

Consider the MIMO system shown in Figure 3.1, with

u(Jw) E ,e

Y(Jw), u (jw), d(Jw), TI(jw ) E Cm~

c

P(jw) is the p input, m output plant, and K(jw,v) is the m input, p

output controller. The vector 0 represents the control parameters, which

"*. are chosen by the designer. The vectors d and T are disturbance and sensor

noise signals, respectively.

The transfer function matrix of this system is given by

y PK[ + PKJ- (u- T) + [I + P] d (3.1)
4.
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- where the explicit dependence on w and a has been suppressed for notational

clarity. Here, we see some of the typical SISO design tradeoffs appearing

immediately in the MIM case. For example, consider the above equation with

- 0 . The effect of the disturbance on the output is~C

r -ld

y.- [I+PKI d.

Taking norms on each side and using equations (2.10) and (2.11) we obtain the

inequality

y - I + PK) 1 d (3.2)

For disturbance rejection we must therefore have

(I + PK) > 1 (3.3)
I.-

at frequencies where disturbances may be large. This translates into a

condition on the loop gains through the singular value inequality

" Io(I + PK) - '(PK)J < 1. (3.4)

When

(PK) > > 1 (3.5)

,. condition (3.3) is implied. This requirement of large loop gains and large

return difference matrix for disturbance rejection is analagous to the scalar

case.

A system has good command following properties if the error between
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the input and the output is small when no sensor noise or disturbance is

present. From equation (3.1), we see that good command following requires

PK I + PK]- 1 (3.6)

in the frequency range where the co---and signal has significant energy. If

e(jw) is defined

e(jw) - y(jw) -u (jw) (3.7)
c!

then the relation

-1u
e - [I + PK] u (3.8)

C

is obtained by substituting equation (3.1) into (3.7) with I d - 0. As

before, condition (3.3) implies that ie II will be attenuated and that equa-
tion (3.6) will be satisfied.

The first limitation on making the loop gains arbitrarily large is A

imposed by the sensor noise 1. From equation (3.1), the noise to output

transfer function matrix is just the negative of the command to output ma-

trix. Thus, conditions (3.5) and (3.3) and equation (3.6) imply that the

sensor noise will be passed directly to the output. From equation (3.1),

( 1+< K PK) (3.9)

and so it is desirable to have

S(PK) < 1 (3.10)

at frequencies where the conmand signal is dominated by the sensor noise,

"°4
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There are other more severe restrictions on the loop gains imposed by robust-

ness and sensitivity considerations.

A closed loop system is said to be robust when it remains stable under

plant perturbations. These perturbations represent the difference between

the true plant, P(jw), and the mathematical model, P*(jw). As discussed in

Section 2, this difference can be modeled by additive or multiplicative per-

turbations. In the case of additive perturbations that surround the plant

and controller, the sufficient condition for closed loop stability (see Thm.

2.4) is

_ (I + P*(jw)K(jw,a) ) > IA(jw) V w (3.11)

A

where I (jw) is the uncertainty magnitude bound. For good robustness pro-
A

perties, the left hand side of the above equation should be made as large as

possible through choice of the parameter vector a.

When the difference between P(jw) and P*(Jw) is modeled by a multipli-

cative perturbation, the sufficient condition for stability (see Thm. 2.5) is

* - (3.12)

Z(I + (P*(Jw)K(jw,a)) > Am(j W) V w (.2

If 1M (jw) >> , then by equation (3.4)

1

The uncertainty magnitude bound A (jw) is a positive real valued function of

w. It defines a class of perturbations AP where each member of the class

is a.mxm transfer function matrix that is stable, rational, and has IPA!I <
A (jw).A
A -1
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a(I + (P*(Jw)K(jWa)J) a_([P*(Jw)K(jw,)] )

I: (3.13)" [(P*(jw)K(jw,O))]

and this reduces to condition (3.10). fl
Similar conditions arise from sensitivity analysis. It has been shown

-4
(51 that J

ec (jw) - [I + P(jw)K(jw,)]' e (jw) (3.14)

where e (jw) and e (jw) are defined in eqn. (2.23). This again implies that

the return difference matrix (eqn. 3.3) should be large in the frequency range

of interest. Notice that the true plant P(jw) appears in the above equation.

This equation can be expressed in terms of the nominal model and the perturba-

tibn magnitude bound, as shown in Theorems 2.6 and 2.7. Here, we get the

conditions that

a(, + P (Jw)K(jw,01)) > I + A(jw) (3.15)

for additive perturbations, and

a(I + [P*K] - ) > z (jw) + U([P*(Jw)K(jw,a)] 1 ) (3.16)

for multiplicative perturbations.

In designing a control system, and in choosing a, it is necessary to

know where in the frequency spectrum the uncertainty bounds are large. In

general, the multiplicative uncertainty bound AM(jw) increases as frequency

increases. This places a limit on the loop bandwith. The crossover fre-

quency, defined as

" :a (P*(jw )K(Jwc, )) (3.17). ..



39

must occur approximately where IM(jw) becomes greater than one. Otherwise,

Theorem 2.5 will be violated. Typically additive perturbations dominate at

lower frequencies, and so eqn. (3.11) should be satisfied for w < w. These

requirements, in terms of loop gains, are shown in Figure 3.2. This is the

MIME:) generalization of classical SISO loop requirements.

The task of the designer, then, is to manipulate the singular value

functionals in equations (3.11) and (3.12) through choice of the parameter

vector C. In this thesis, a method of choosing 1 to increase (or decrease)

these quantities in a gradient optimal sense is proposed.

3.2. General Sensitivity Formulas

The design of any controller usually requires several iterations.

An initial parameter vector a is selected (see Figure 3.1) and then the

closed loop system is valuated to see if it meets the design objectives and

constraints. If not, a new vector a must be determined on the basis of the

evaluation.

As previously discussed, the design objectives translate into upper and

lower bounds in specified frequency ranges on the functionals defined below.

In these equations, the frequency variable has been suppresed for notational

brevity.

a(I + P*K()) a () (3.18)
- -A,O 0 0

a (I + K(%o)P ) A ,(a o ) (3.19)

I + [P*K()] "l) a O (3.20)
0
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a(I +(K()P*1 a (%) (3.21)

The next design vector i must then increase (or decrease) the value of

X'y(CVo) in that frequency range. Here, 2X'y(oo) refers to any of the above

functionals. (This discussion applies as well to any singular value aX'y(ao)

of interest.)

The gradient vector VzXy(ao) can be used to increase (or decrease)

-_X,y(CIO) in an optimal sense. Since the gradient vector points in the direc-

tion of maximum increase, there exists an c such that if 7oxy(%O) 0 then

-x + 9 (3.22)
S lVx,Y(aO)II ) > xY(co + e u)T(3.22

for every vector u E Rn . The vector or is then defined

1" 1 _ ao0 + e-Va-X'Y(ad. (3.23)

Since 11 must be a vector of constants, a fixed value of w must be chosen for

the calculation of the gradient. The vector a is then guaranteed only to

increase the value of a XY(l) in some neighborhood of w - w . To increase

aXY (c ) in a specified frequency range, several design iterations may be

necessary. In this case, a design iteration consists of the following pro-

cedure.

(1) Calculate VX W(k) at a constant w - wk

(2) Form a k+l - k + eve XY(ak)

(3) Evaluate a XY (Ok+l) as a function of frequency for different

values of c. Select c k
k-
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(4) If aXY(tk+l ) does not meet the overall frequency criterion,

return to step (I).

In each iteration, it may be necessary to calculate the gradient at

a different frequency than the previous iteration. Also, it may be neces-

sary to calculate gradients with respect to different functionals (X-MA,

.Y=I,O).

The gradient vector can be obtained by considering

n +.: -j+ c6= (3.24)

where w is held constant. With the selection of the appropriate inner pro-

duct, a(X) defines a map between n dimensional Hilbert space and the positive

real line. When a XY(i) is distinct, the Frechet differential can be com-

puted. By the Riesz-Frechet theorem, the differential can be expressed as

an inner product. If the arbitrary vector Aa can be isolated in the inner

product, the other term must be the gradient.

6a X(a,,A) v a (a), a (3.25)

This method will be used to calculate the gradient of the four singular value

functionals in equations (3.18) - (3.21).

Applying the singular value differential formula (2.57) to equation

(3.18),

- a0"A,O (v; oO = Re uH 8K(;Ac) P*v]. (3.26)

u and v are the left and right singular vectors of the matrix I + P*K(f)

4 that correspond to the smallest singular value. In the following equations,

the symbols u and v will be used generically to denote left and right sin-

::: "
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pgular vectors corresponding to the appropriate matrix. Next, equation (3.19)

yields
U4

6a (c;Act) ReuH 8K(a ;Act)P*vI. (3.27)
AI

Similar formulas are available in the case of multiplicative perturba-

tions. First, to avoid long equations define the loop transfer matrices

* *
T() P K(a), TI(v) A K(a)P*. (3.28)

* "Then applying equation (2.57) to (3.20),

6 a-MO(;&a) - Re ( uH8 ,[P*K] -1v) (3.29)

where 8V (.) denotes the differential with respect to a in the direction 4ov.

Employing equation (2.40),

--aO (CI;I) = -Re u HT'I P *K(a;Aa)T V!. (3.30)M 0 0

Similarly,

8 aM, 1 (0;AC) - -Re uHT l8K(a;,ct)P*TlIv. (3.31)

To isolate the Aa term in the above equations, the structure of the

controller, the choice of inner product, and the particular space to which

i belongs must be determined. This will depend on the particular problem

under consideration.

3.3. The Linear Quadratic Problem

The linear quadratic (LQ) control problem expresses the control

objectives in terms of a performance index. The objective of the problem
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is to choose a control u to minimize

r~ T TJ = jX" Qx + u Ru]dt (3.32)
0 :

where x is the state vector defined by the system

x - Ax + Bu. (3.33)

Here,

nm
x E R u E.

It will be assumed that:

(1) Q-- (3.34)

(2) R>O0

(3) (A,B) is stabilizable

(4) (.fQ,A) is detectable

(5) All states are measurable

Then, a linear stabilizing state feedback solution exists and is given by

u - -Gx (3.35)

where

G- R BK

and K is the unique positive semidefinite stabilizing solution of the alge-

braic riccati equation (ARE),

T T
KA + A K + Q -KRBTK -0. (3.36)

,'% . . -' .. . .. .. .. .-. ° . . -*.. . ..-. - - . . - - - - - - - - - - •... ..
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To make this feedback system realistically feasible, a command input

is usually added to the control u. Equation (3.35) then becomes

u - -Gx + u
c

The system of equation (3.33) with the control given above can be

y expressed in the frequency domain by transfer function matrices. The nominal

plant transfer function matrix is given by

" P (jw) cp(jw)B (3.37)

where

p(jw) A (jwI - A) 1

The loop transfer matrix, calculated by opening the loop at the input of the

plant is

TI(Q,R) GcpB (3.38)

with mx
TI(Q,R) E emxm.

The dependence of T on the Q and R matrices is considered explicitly here.

-- Also, the dependence on w is suppressed for notational brevity. The output

loop transfer matrix is

To(Q,R) - 9BG (3.39)

.1: where '

To(QR) E .
0'

The closed loop transfer matrix is given by the following input-output

2
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equation,

y cpB l + GcpB] uc .  (3.40)

The controller is simply the constant gain matrix G.

K(jw,) , G(Q,R). (3.41)

Here, the control parameter a represents the (Q,R) matrix pair, since these

matrices are the choice of the designer. The LQ system is shown in Figure 3.3.

Although G(Q,R) appears in the feedback loop instead of the feedfoward

loop, the preceding concepts and theorems are still valid. It is still desir-

able to make

a(I + TI (Q,R)) (3.42)

as large as possible below crossover, and

a(I + T (Q,R) ) (3.43)
I

as large as possible above crossover.

It turns out theoretically that the full state feedback LQ loop has

very good performance and additive robustness properties. Starting with the

ARE, it is possible to derive the following relation (20] provided tiat the

open loop system has no poles that lie on the jw axis.

a (I + T (Q,R)) > 4 (R) Y w ; V admissible (QR). (3.44)

-R I n m

The R subscript means that the singular value has been weighted by R.

- (A) a (AR). (3.45)

-R "/min3.5

-1
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In classical terms, this translates into +:o,-6dB gain margin, and + 600

phase margin independantly in each input channel when R is a diagonal

matrix [4].

Although these are impressive theoretical guarantees, in practice

there are problems. The fact that every LQ loop has a 20dB/decode rolloff,

contradicts the physical reality that almost every real system has a trans-

fer function with two or more poles than zeros [2]. Inevitably, there will

be unmodeled dynamics in the nominal LQ system. Hence, the designer may

find it desirable to manipulate equations (3.42) and (3.43) to obtain even

better properties than equation (3.44). For example, a > lOdB may be

a necessary requirement in a certain frequency range. The iterative design

method of section 3.2 provides a way to tune up the Q and R matrices to

achieve the desired frequency shapes of the system singular values.

An immediate obstacle in applying this design technique to the LQ

problem arises because (Qi,Ri) must satisfy the positive definitions re-

quirements (3.34). In equation (3.23), the parameter vector of represents

(QiRi). For example,

Q Q + e a , (Qo'Ro).-.. Q1 Qo -x,y 0

The matrix Q will not necessarily be positive semi definite. This problem

can be circumvented by calculating the gradient with respect to the square

roots. (Q oR where

MT Qom E Rpxn
00 0 0

(3.46)

N NT N R N Rm ' m

0 0 0 04Etmmj

: : No9
- .- o o . o. . . . . " - - - - - - -



49

Then, the (Q1 ,R1) pair is formed

TQa(M+cVa)T (Mo + VMa-i,)) (3.47)

Rl (NO + e2VN _ (No + e2VN -ij) "

Note that only positive semidefiniteness is guaranteed, and R will have to

be separately tested for positive definiteness.

Before using the sensitivity formulas (3.26) - (3.31) to calculate

the gradient vector, a Hilbert space and inner product must be defined. Here,

the parameter vector O represents the (M,N) matrix pair. The singular value

functional aXy(M,N) is defined over the cross product Hilbert space R xn

mx m

The i r pr tr ut+ t 1 (3.49) -

((Ml N1), (MV N 2 ) > A_ tr [M T + tr [NTN] (3.49) ]

We are now ready to derive the gradient of the functionals a (X ) 2

for the LQ controller. First, consider the case of additive perturbations:

Theorem 3.1 (Input Perturbations)

a) The gradient of a (M,N) with respect to M is

V A,
, - -MP1, (3.50)

where P is the solution of the Lyapunov Equation
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~ R +T -0 (3.5.)

and where.

A - Bnru RiBT (3.52)

A -A - G (3.53)

v,u -right and left (respectively) singular vectors of I +

T (M,N) corresponding to the smallest singular value.

b) The gradient of a Aj(M,N) with respect to N is

VNA -NP2  NGP 1 G T (3.54)

where:

P2  -Re [z 2  + E~~ (3.55)

H -1E 21 T IvuR .(3.56)

To simplify the notation, the explicit dependence of the Frdchet dif-

ferentials on the variables M,N,614, and AN will be dropped unless needed for

clarity.

Proof: From equation (3.27), we have

8(N)AI - Re (u H N)GcpBv). (3.57)

* - The differential of G over the cross product space is equal to the sum of

the differentials over the individual spaces;

8 G -6MG+ 8G. (3.58)(M,N) M N
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First,

6MGm R-I1BT 6K(3.59)

I? where K depends on M through the Reccati equation (3.36). Employing equation

(2.51) to differentiate the Reccati equation with respect to M yields

6MKA~ + AT8M+JM+ ATM + C&M)l

&KR- BK - KBR- B T6K- 0.

Combining terms,

T t6MK(A -BG) + (A -BG) &dK + MTAM +AMTM -0. (3.60)

This can be expressed in terms of the Lyapunov operator defined in equation

(2.35) and the closed loop A matrix defined in (3.53)

A6K - (MTAM + &MM). (3.61)1

Since this operator is invertable (see equation 2.37) the above equation can

be solved for 6MK

6MK LA- (MAM +AMM) (362

Substituting this into (3.59)

6MG -R- BL I (MTAM +&MMH) . (3.63)-

The differential %Gcan also be found,

1G -T - 1%T(34-
N R B NK + 6N(R BK. (.4

-~~ N ---.--------.-.-.-- ___
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Using equation (2.40),

6 N(R )--R &N RR

R- R 1 (N4 + A) T (N + eAN)R -
ginO

-I. T t(3.65)
-- R (NTAN + ANTN)R-

The differential 6NK can be found by differentiating the Rizcati equation

with respect to N,

NA+AT 8 B-iBT K B8NR- 1) T K B- 1BT8NK 0

Substituting (3.65) into the above and combining terms gives

SNKA + A8K +G(NAN +ANN)G -0.

In terms of Lx we have

T GT T

L K) -G (N AN + AN N)G

8NK - (G T(N TAN + ANTN)G). (.6

Substituting (3.66) and (3.65) into (3.64) yields

-IT -1 T T T
8 NG R B L- (G (N AN +ANN) G)

tT T (3.67)
-R- (N TAN + AN TN)G.

Substituting equations (3.67) and (3.63) into (3.58),
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-1

6(M,N)G - 1 BTL (MT + AMTM) - 1'T L, (GT(NTAN

+ ANT N)G) - R- (NTAN + ANTN)G. (3.68)

Then, from equation (3.57),

( ReruH[R-IBTLil( TAM + -M) + R- BTLi1(GT (NTAN(14,N) -A, I C . L (

+ 4NTN)G) + R (NTAN + ANTN)G]cpBvl. (3.69)

" Since the trace of a scalar is a scalar, we can take the trace of the

right hand side of the above equation and the equality still holds. This

allows us to manipulate the matrix terms and get the right hand side in terms

of the inner products defined on the underlying spaces. Then,

- " -Re[trju R (N AN + ANTN)T V

+ tr[u"R BTLi I(GT (NTAN + ANTN)G)cpBv) (3.70)

+ tru HRBTLi (MTAM + AMTM)cpBv) 1.

The first term of the above can be rearranged as follows,

First term H- T T
First term Re~trtu R (N AN + AN N)T (M,N)vI

(3.71)

- RettruH " TANT (MN)v) + truHR-NTNT )v].

Using the co-mnitive multiplication properties of the trace and definition

(3.56), we get

First term =Re[tr"ANTN(ET + )
2,1 2,1 ,I +  ""

.- ~, .

--
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- trtANTNP2,1 (3.72)

where is defined in (3.55).

The second term of (3.70) can be manipulated in a similar fashion.

We have

Second term - Re~tr(uHR'BTL -'(GT(NTAN + ANTN)G)0Bv)

. Re trt (G(N AN + AN N)G)cpBvu R BT""3.

The AN matrices can be exposed by moving the Lyapunov operator L, on to the

following terms through the adjaint operator LIT (see equation (2.38)). The

above equation is then

Second term - Rettr(GT(NTAN + ANTN)GLXT (;BvuHR'BT)] 1.

Breaking this up,

Second term Rettr(GTNTANGL.T (Z1,.)]

T T -I(3.74)

+ tr(G ANTNGL T (E])]

where E is defined in (3.52). Using elementary trace properties,
-,1

T T T -
Rettr(GLKT (E,)G N AN] +trtAN NGLrT (E-,)G))

T -1 T T)GT
-- e[ttr(AN GL- T + 3 )G

tr(ANT j-(Re(El9 1 + 1 31)GTI (3.75) '

. .l
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where the linear character of LIT has been exploited. According to defini-|A
tion (3.51), this can be written as

" trfANTNGPi GT). (3.76)

The last term of (3.70) can be manipulated similarly,

Third term - [tr[uHR IBT_(MTAM + wjM)cpBv))

IetrL (MT&M + &MTM) YBvu B Tl

-l

- Re~tr[(MTM + &MTM) L-T ( (3.77)

Further juggling as in equations (3.74) - (3.75) yields

T -1l
Third term - tr(AM MLT (RetI, + ,l])}

% - tr(&M TMP,. (3.78)

Substituting equations (3.72), (3.76) and (3.78) into (3.70), we have

.T

A ZA - trANTNP 2, trATNGPI'T G tr(MM ,
-(M,N)-A2,'- -IJtfC 1 J

In terms of the respective inner products,

Liti
;-'. 6(MN A - . (, N,NGP .,GT - (AN,NP2,> - (AMMP,£ )

- (AN,-NGP 1IG
T 

- NP2,1 > + (AM,'MPI).

The right hand entries of these inner products are the gradient matrices. C

|" 'I
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Theorem 3.2 (output Perturbations)

a) The gradient of a A'o(MN) with respect to M is

7 a A (M,N) -- MP l (3. 79)

where P 1 0 is the solution of the Lyapunov equation

P XT + AP - Re + - 0 (3.80)
P1 K P1 ,0  RC 1,0  E1 0

H I T
and where: E Hu -lTR (3.81)

u, v are the left and right singular vectors corresponding to the smallest

singular value of the matrix I + T.

b) The gradient of a AO(M,N) with respect to N is

'N A, (MN) - NP 20- NGP GT(.2

where: P2o Re(z2  + E T] (3.83)

E2  IGvu cpBRl (38)

Proof: From equation (3.26), the differential is

tui 6 ::::' Re (uHCB6(MNGv).

PAO The differential of G was previously calculated in equation (3.68). Substi-

tutig tis ntothe above, and taking the trace,

6 M,) AO -RtruHcBR1(NTA + ANT N)G



57

+ R-BTL G T(N TN + ANTN)G(

+ R- BTL IIMTbM + MTMIv). (3.85)

Arranging the first term as in equation (3.71),

First term - Rettru pBR'- (N TN + ANTN)Gv))

- Re~tru H BR.1 T NGv + crBuH 1R.NTNGv).

Using the coumnuitive and transpose properties of the trace and definitions

(3.83) and (3.84),

* First term - Re~trtGvuH 9BR 4'NTAN) + trtANTNGvuHcBR'I]j

- Re~trE 2 ,0 NT 4N) + tr(ATN2,0

- trfAN TNP2,0 ). (3.86)

The second term of (3.85) becomes

H -1iT-. TTNNGvlSecond term - Re[trtu (pBR B L lG(N AN + G vl)

I T TaN + ANTN)G ]vuH BRBT

" ReftrfLK' (GT(NTAN + ANTN)G]E]). (3.87)

Employing the adjoint operator and proceeding as in equation (3.74) through

equation (3.77),

Second term- tr(ANTNGP 1 0 GT  (3.88)

-I
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The third term in equation (3.85) can be manipulated in a similar way,

Third term - Re[tru 9 BTLL £MTAM + AMTMv)

- Re(trdL1' (MT M + AM TMvuHcBR-BTII
- Rettr~[LilMT M + AMTMI] o]. (3.89) 

And proceeding as in equations (3.77) - (3.78),

Third term- trIAMTMPO. (3.90)
1,0

-- Substituting equations (3.90), (3.88) and (3.86) back into (3.85),

6 A - "tr(AMTMPI - tr.ANTNP I NTNGP GT}
(M,N) -A,O 1,0 2,01-t 1,0

& (AM,-MP 1,0  + (AN,-NP2,0 -NGP lo G).

This completes the proof.

The case of multiplicative perturbations yields similar results.

Theorem 3.3 (Input Perturbation)

Suppose that the matrix B (in equation 3.33) has full column rank, and

that the pair (A,M) is observable.

a) The gradient of aMI(M,N) with respect to M is

VM -H,I  MP3,I (3.91)

where P is the solution of
3j1

P3 ,1X + AP3 1  Re~E3 j + T 3,1 0 (3.92)

4 . . . . . . .._ - 1 ,1 3,
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and where

E 3,1 _4 BT IvuHT IRB .  (3.93)

u and v are the left and right singular vectors of I + T (M,N) correspond-

I -ing to the smallest singular value.

b) The gradient of aMI (M,N) with respect to N is

M, -NP4,1 + NGP G T  (3.94)

where

P4  Re(E +E (3. 95)

and, H4,1 A vu-l -R (3.96)

Proof: From equation (3.31)

HT-I -
6 a in-ReluT 6 GyBT V (3.97)
(M,N)-MI (MN)I

The assumption that B has full rank and that (A,M) is observable is needed

to guarantee the existance of the inverse of T, - GcpB.

Thd differential 6 G was previously computed in equation (3.68).
(M,N)

" Substituting this in,

( ) - "Re[uHT-l[R' BT 1 (MTAM + aM TM]
(M,N) SMII

1 T-il TT
+ R 'B (G(NTAN + ATN)G)

+ R (NTAN + ANTN)G cpBT- v).
I

Taking the trace and rearranging,
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H tr[ B N AN + TN)G3BBTT ] ,

H -1-T-1 T T 1

+ trju HT I R-LBT . L(MTAM + AM M)cpBT I v33 (3.98)

The first term of the above can be manipulated as in equations (3.71)-

(3.72) to yield

Re~tr uHT-iRi (NTAN+ ANTN)v}} - tr TP4,I }. (3.99)

Following equations (3.74)-(3.76), the second term of (3.98) becomes

: H-i-i-i T T Iv
Rettrtu T- R B L[G(N AN + ANTN)G"cpBT"lv)I

!:- I
-tr[AN

TNGP31 G
T ). (3.100)

Following equations (3.77)-(3.78) the last term of (3.98) is written

Re~tr ju HT-1 R -1B TLxW (MTAM + AMTMjHgBT 1 v))

I I
- tr(&TM, (3.101)

Substituting equations (3.99)-(3.101) into equation (3.98) yields

(MN)-MI trAMTMP3 , + trAN(NP4  + NGP3 1 G))

- T(AM'MP 3,1+ (AN,NP4 +NP3G

This completes the proof.

Theorem 3.4 (Output Perturbations)

Suppose that the pair (A,M) is observable, and that the matrix B has
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rank n.2

a) The gradient of -M (M,N) with respect to M is
;o"O

!V -MP (3.102)
VM-MO 3,0

p
. where P3 ,0 is the solution of the Lyapunov equation

-,- + 1P3,0 Refz 3, + 3 0 (3.103)

. and where: - Hl-1 B -1TZ3O - TO vuHTo yB R " B T  (3.104)

3,0 0 o 0 B

* u, v are the left and right singular vectors of the matrix I + r (MN) corre-

.. spondLng to the smallest singular value.

b) The gradient of a (M,N) with respect to N is

-Mo

7N -O NP4,o + NG3 GT (3.105)

N-M,0 ,0 +NP 3 ,0

where
S4,o Re (E +ET (3.106)

4,0 4,0 4,0

and H-
E A GT vu To BR (3.107)
4,0 - 0uT B

_ Proof: From equation (3.30),

6 _ -- Reiu T'cpB6 (MNGT0 v"
(M,N) -M, GTI (3.108)

Notice that B and G are of rank n, thus the inverse of T - cpBG exists. Sub-

* stituting equation (3.68) into the above and taking the trace,

2This assumption is unrealistic. See Chapter 5 for further remarks.

4i!
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8 (M,N) M,O Re[tr~uHT0 yB[R '(NT AN + ANTN)G

+ R BT_ (G (NTAN + ANTN)G]

-lT L-1MTM[ + AMTM To T (3.109)

The first term of the above can be rearranged as in equations (3.71)-

(3.72)
Rettrtu ' _BR'(N TAN + ANTN)G vI - triANTNP4 0 ]. (3.110)

The second term of equation (3.109) can be rearranged as in equations

(3.74)-(3.76)

H -1 -1.T-1l T TN
Retr u To cpBR B (G (N + ANTN)G)1Cv

StrANTNGP3  GTi. (3.111)

Following equations (3.77)-(3.78) the last term of (3.109) becomes

Re•t (uH 1cpBR - 1B TI-1MTAM + MTMjH v" 1 r(m .o (3.112)

Substituting equations (3.110)-(3.112) into equation (3.109) gives

us the final form,

(M,N)M O  (AM,MP 3 0 ) + (AN,NP4,0 NGP 3 0 GT

which proves the theorem.

In many LQ designs an observer must be used to get full state feed-

back. It has been shown that the inclusion of an observer (or any dynamic

element) in the LQ loop negates the robustness guarantees implied by equa-

tion (3.44),[21]. Hence the need to manipulate the system singular values
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to obtain increased robustness and sensitivity margins is critical in the

output feedback case.

_ The calculation of the gradient vector is complicated slightly by the

inclusion of an observer in the loop. The observer transfer function matrixn

also depends on the feedback gain matrix G, and hence on the (MN) matrix pair.

The product rule for differentiation must then be used in equations (3.26) -

(3.31). Following this line of reasoning, it is a straightfoward exercise

to extend the above theorems to the output feedback problem.

a7

,....
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4. APPLICATION

In this section the gradient design method will be applied to a

4th order nominal linear quadratic regulator to improve the low frequency

properties. An alternative asymptotic design method which has been success-

:" fully used [22] will also be applied. The two designs will be compared, and

certain important advantages of the gradient design will be discussed. The

nominal plant consists of the standard linear time invariant differential

" equations in state variable form

S-Ax + Bu, xER, ue Rm . (4.1)

The feedback control which minimizes the cost functional

J x TQx + u TRu dt (4.2) !r

0

is given by

u - -Gx (4.3)

where

G R71  K.

K is the solution of the A.R.E.,

T -T
KA + AK + Q- KBRIBTK 0 (4.4)

where it is assumed that (A,B) is stabilizable and (/,A) is detectable.

Q and R satisfy the usual positive definiteness requirements, and otherwise

are arbitrary.

To illustrate the design procedure, values for A, B, Q, and R were

selected as shown below

7i
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0 1 U 0 10 "

0 0 1 0 0 1
A- B- (4.5)

0 0 0 1 1 0

a -50 -87 -45 -9 L 0 1

Qo 1 4 Ro 12" (4.6)

The subscript 0 above indicates initial values for the weighting matrices.

'. The nominal plant is stable with elgenvalues at

'.:. 1 - -1

X2 l -2 (4.7)

X 4- -3+J4.

The closed loop system has eigenvalues at

X, 2 - -8.01+j8.24
1,2 (4.8)

A3,4 - -1.16+j .408

with

G0.[2.89 4.13 2.13 -0.1611 49Go ". (4.9)
2.38 4.45 1.59 -0.128J

As discussed in Section 3.1, the singular values of the return

difference matrix, the loop matrix, and the inverse Nyquist matrix provide

a measure of the various closed loop system properties (robustness, sensi-

. tivity, disturbance rejection, etc.). These quantities are plotted in

Figures 4.1, 4.2, and 4.3 respectively, for this nominal system. For con-

venience, the notation

. .. .. . . . .
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S(i+GiB) Q (4.10)

a (G -LB) (4.11)

a(I+ [iB]-l) A (4.12)a(I+ -- M,I,i

U
will be used. The i subscript refers to the independent variables (Qi,Ri).

In this thesis, the bandwidth (wB) of a MIMO system will be defined

to be the frequency at which the largest singular value of the transfer

function matrix drops to i/ of its zero frequency value. Recalling that

U ([I+ GB]-l Gi B) - [2_(I+ [GieB]- 1 )]-I (4.13)

the closed loop bandwidth can t found from the plot of a MI i  From

Figure 4.3, the closed loop bandwidth is wB = 21 rad/sec. Notice that here

we are considering the input-output response between u and y, as shown in* c

Figure 4.4.

The crossover frequency (w ) is defined to be the frequency at
c

which the largest singular value of the loop transfer matrix has magnitude

one. From Figure 4.2 wc 11 rad/sec.

In most LQ designs, the (Q,R) matrices are fine tuned by an itera-

tive trial and error method. This is because there are usually several

different design objectives and many constraints. Since there is no direct

relationship between (Q,R) and these objectives and constraints, a series of

(Qi,Ri) matrices must be chosen, and the closed loop system tested at each

iteration. The information obtained at the ith analysis is used to make the

next adjustment on (Qi,Ri). In the simple example presented here, only one

* iteration is necessary to expose the characteristics of the design method

developed in Section 3.

.- J~ *.-~ - . -- V V
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For purposes of illustration, the design objective in this example

will be simply to increase the value of a at frequencies w< .1. This-A,IO

will reduce the effect of random disturbances in this frequency range. It

will also make the system more robust and less sensitive to additive modeling

errors (in the same frequency range) as shown in Figure 4.4. Notice that the

perturbation surrounds the plant and controller. In terms of Theorem 2.4, the

nominal plant includes the controller,

P*(Jw) - GIB. (4.14)

In this case, the value of aA is a nonconserva'.ive bound for robustness.

In other words, there exists a perturbation as shown in Figure 4.4 with

'AP -A,I,O

that destabilizes the system.

For design constraints, we will assume that the nominal bandwidth

and input-output properties are acceptable, and should not be altered

drastically. In particular, the closed loop bandwidth should not increase

much, because if it does the system becomes more susceptible to high

frequency multiplicative perturbations.

One way to affect the singular values is to assume the (Qo,Ro)
0

matrix pair reflects the appropriate priorities. Then, the feedback is

determined by trading off between control energy and speed of response.

This is accomplished by introducing a positive scaling parameter in the cost,

J(Q) - xTQox + PuTR u dt. (4.15)0 0
- .| % ° 

-0
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This method has been used for eigenvalue adjustments [10]. For

large values of p, J(p) approximates the minimim energy cost functional.

In this case the stable open loop eigenvalues remain almost unchanged in

the closed loop system. The unstable ones are reflected symmetrically about

the jw axis. As P tends to zero, the closed loop eigenvalues either tend to

transmission zeros, or to minus infinity in a Butterworth pattern. This

result is a direct consequence of the following relation which is true for any

LQ system [111

H1H(I + G (jw)B) R (I + 0Qw)B) -R + (j w)B]HQ (jw)B. (4.16)
0p 0

This equation can also be used to derive relationships between p and the :
-. .4

singular value functionals.

Lemma 4.1: Consider the LQ system described in equations (4.1)-(4.4), where

(4.17)
R =pR.

Then, for each frequency w for which jw is not an eigenvalue of the open loop

system,

" minR° lim i (I+G(p)pB) _ vmax(R ) (4.18)

".,'- i " , ,. .m

where a (.) is the ith R weighted singular value, as defined in equation
00

1- equation0 (3.45). .1

Proof: Cansider equation (4.16). Since these matrices are equal, their

eigenvalues must be equal,
X i((I+G(p)OB)H R(I+G(p)PB)) - v(Ro+1 (PB]HQoPB)vi. (4.19)

H 1 H

* * *.
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Here, vi is the orthonormal eigenvector defined by

1H
(R +- [PB]HQ PB)v - xvi. (4.20)

0 P 0 i 1

In terms of singular values and Euclidean norms

2 212
(I +G(p),pB)- i /lv 11 + - _o Bv 1 (4.21).:: Ro

Notice that the term l QvToBv I is bounded for all p whenever jw is not an

eigenvalue of the open loop system. Taking the limit on each side of the

above equation and recalling that'a
Iv V 1 a o(AR-) I Y'R-v I : ZY (ART)
i 0 0 0

implies equation (4.18). 3

Notice that when R 0I, equation (4.18) reduces to

lim a i(I+ G()B) = 1.

A similar type of result is available when p tends to zero.

Lemma 4.2: Consider the LQ system described in the above lemma. Then for

all w such that jw is not a transmission zero of / )P(,w)B,

lim a(I+G(p)PB) - =. (4.22)

Proof: From equation (4.21),

o I ( a1 (ro'BV 1.
0 0

Since jw is not a transmission zero of /Qo B,

7oBv1  0.

Consequently,
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lira (I+G(p)OB) -
L~-* ,' 0-

But,

{R(I+G(p)sPB) < (V9o)O(I+G(p),PB)

0

which implies equation (4.22). 

If jw is a transmission zero of /Qv5(jw)B of multiplicity £ then it

is still possible to see from equation (4.21) that

lir a (I+ G(p)pB) - (4.23)

The remaining i singular values will be constant,

i  (I+G(p) pB) R (vi)

00

Note that if either B or Q has rank less than m (where m is the number of

inputs) then

a "o (I+G(p),PB) 0R (vi) Vp

i-l,...,m-min{rank{Q}, rank{B}}.

It is also possible to show that the R scaled singular values. 0-

are nondecreasing functions as p tends to zero.

Lemma 4.3: Consider the LQ system described in equations (4.1)-(4.4) with

(Q,R) as in (4.17). Then

P > P2 (I+G(P )B) a (I+G(p2)'B) (4.24)" :' - " RO  Ro

where i i,..,m.
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Proof: From equation (4.19),
21 [BHQ

a (I+G(p)vB) - A (R H V B).

0

* Differentiating each side and utilizing equation (2.56),

"" Where the independent variable on the left side has been dropped for brevity.

.- The vector v1 is defined in equation (4.20). Then,

do i

R o

Shi implies 2
R 0 0

Weqationn(4.15)eth vaube ofA n the lQ sysem an be djused o anvy.

escThied ins equation (4.(40). C.,

-"euai n 415(hevlu Qf , n (14 e .262) (4.25)nbeajute o n

1-This aluetti waschsniu for ppse ooprs wt the followingste

n i

whaient imlesin
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This places the closed loop eigenvalues at

X "--.992

X 2 - -2.32

X3 - -11.3+ 11.3[. 13,4 -

with a feedback gain matrix

[5 .40 7.18 3.83 -.5631
-- 4.28 8.13 2.33 -.428] (426

Graphs of the important quantities a and a are shown in

aAIl, L,I,l' MI'l

Figures 4.5, 4.6, and 4.7. From Figure 4.5, the low frequency value of

A is greater than a by about 4dB.
-A,I,l -A,I,0

This indicates an improvement in robustness, disturbance rejection

and sensitivity reduction properties. However, the design constraints have

been compromised somewhat. From Figure 4.6 we see that the crossover fre-

quency has increased from the nominal value of w a ll rad/sec to wc a 20

rad/sec. From Figure 4.7, the bandwidth has increased from wB -21 rad/sec to

WB 30 rad/sec. This shows that the system has become more susceptible to

high frequency multiplicative perturbations. Also, the magnitude of the

feedback matrix has increased. In the nominal system,

SIG I - 7.12. (4.27)
0

r. For the asymptotically designed system,

NG01 - 12.8. (4.28)

FI

This is an 80% increase in magnitude. It indicates that more control energy

is needed to attain the increased value of A,I, I .
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The design procedure developed in Section 3 was also applied to

this example via Theorem 3.1. The gradient of _A,0 was computed with

respect to M- Q, where R was considered a constant parameter. At w- .1,

the gradient matrix was found to be '.

0.200 0.512 0.313 -0.0525

0.512 1.23 0.131 -0.0796 -jVa_ - (4.29)
VM-AI, 0.313 0.131 1.19 -0.0640 (.9

-0.0525 -0.0796 -0.0640 -0.0281

The Q matrix was calculated from equation (3.47) with e i,

1.80 1.80 1.13 -.178 '-

1.80 5.26 .743 -.295• mQ2 = (4.30)
-21.13 .743 4.91 -.233

.178 -.295 -.233 1.07

R2  12.

It was found by trial and error that this value of e produced the greatest

increase of aA,I,2. Plots of aA,I 2, aL,I,2' and aMI,2 are shown in

Figures 4.8, 4.9, and 4.10. The closed loop eigenvalues are now at

1 M -.871

SA2 - -2.46

X :3 4  -8.48+J8.51

with

[3.03 4.31 2.64 -0.1671
G2 -2 (4.31)L::..2 .84 5.80 1.31 -0.181 J l

2":~
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I G 1 -8.31. (4.32)

As before, the low frequency value of a is 4dB greater than-A,I,2isdBgetrha

2 A,I,0" The closed loop bandwidth has increased slightly from the nominal F

value of w B 21 to w 22 rad/sec. The crossover frequency has remained!"B B

" approximately the same as the nominal value at w Z 11 rad/sec. This indicates

that the tolerance of the gradient designed system to high frequency multi-

plicative errors has remained about the same as the nominal system.

Comparing the eigenvalue placements of the three designs, we see

that the asymptotic system has become faster than the nominal system in that

the eigenvalues at -8.01+j8.24 have moved out to -11.3+J11.3. The

gradient designed system shows that the extra control energy needed to push

the eigenvalues to the left is unnecessary, since the same value of a

was achieved in the gradient design where the fast eigenvalues moved only

slightly to the left. That less control energy is needed in the gradient

designed system is reflected in the fact that the magnitude of the gain

matrix G2 in equation (4.32) has increased by only 17% from the nominal

value in equation (4.27).

The size of the G matrix is also important in relative robustness

and sensitivity measurements, where the norm of the largest allowable per-

turbation is compared to the norm of the nominal plant from Figures 4.1 and

4.2

S (1+G° ) -- AL0 - .83, w< .1. (4.33)' " L,I,O

Hence, the nominal system could be subjected to a low frequency (w<.l)

additive perturbation with a magnitude 83% as large as the nominal system
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itself, and remain stable. Also,

A,i,-
;- .76 W< .1 (4.34)

aL,I,O

and so the nominal system would be insensitive to perturbations with up to

76% magnitude variation. In the asymptotically designed system,

oAIl A,I,I-l- .59 ..34, W< .1. (4.35)

For this last design,

a-A.I2 1 
-

-AI 1.33 , - a .76 W<.1. (4.36)
-L,I,2 0L,I,2

Notice that in each case above, the magnitude of the nominal plant (L,,i)

is different because the G matrix is part of it. Because of this, the
i

asymptotic technique actually decreased the relative robustness and sensi-

tivity tolerances. Since IG21 and hence L,I,2 did not increase much in the

last design, the relative robustness margin was increased from the nominal

value.

The fact that 11G21 did not increase much over IGo1 is also

reflected by the low frequency value of UA,I2' which is approximately the

same as U This indicates an important feature of the design
A,I,0'

technique of Section 3 - the motion of the singular values can be separated.

If it was necessary to increase the value of AI,0' it could also be done

with this technique. Hence the designer has the option of manipulating

each system singular value individually. I
9?A

-*.-.-.~>-~*,q.~L.]
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5. CONCLUSION

In Section 3 we saw how important closed loop properties such as

robustness and sensitivity translate into requirements on the singular

values of the return difference and inverse Nyquist matrices. -This in turn

imposes requirements on the singular values of the loop transfer matrix.

Thus a major objective in design is to synthesize a controller that adjusts

the frequency shapes of the singular values of the loop transfer matrix to

meet the requirements imposed by the design criteria. If the mathematical

structure of the controller is predetermined, it is possible to calculate

the gradient of the singular value functional with respect to the adjustable

parameters of the controller. The gradient vector gives the direction to

change the control parameter vector (whose elements are the adjustable

parameters) that will have the greatest possible effect on a given singular

value. Since the control parameter vector is assumed to be constant, a

fixed frequency must be substituted into the gradient formula. Then, we are

guaranteed only that the singular value functional will be affected in some

neighborhood of that frequency. To adjust the entire singular value curve as

a function of frequency, the graditat must be iteratively calculated at

different frequencies, and the control parameter vector adjusted each time.

The linear quadratic optimal control problem can be used as a

method to obtain a full state feedback controller for a general design

* problem. This method has the advantage of being a systematic, numerically

feasible way to choose a feedback gain matrix that has certain minimum

guaranteed robustness and sensitivity margins. However, the design problem

is now translated into how to choose the weighting coefficients (the Q,R
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3matrices). The dependence of the system singular values on these matrices
is certainly nonobvious. Since the mathematical structure of the controller

is known, the gradient of these singular value functionals with respect to

the Q,R matrix pair can be calculated. This provides the designer with a

tool to adjust the Q,R matrix pair to bend the singular values (as functions

of frequency) into a more desirable shape.

The new parameter vector (or Q,R pair, in this case) is formed by

adding the gradient times a scalar to the old parameter vector. In the

optimal gradient method, the value of the scalar is determined by considering

the cost functional as a function of the scalar and setting its derivative

.. equal to zero. The complexity of the relationship between the singular values

and the scalar parameter prevent us from doing this in the LQ problem. Thus

P the best value of the scalar must be determined by trial and error in this

design procedure.

In Theorem 3.4, it was necessary to assume that the matrix B had

rank n to insure the existence of the inverse of TO - QBG (i.e. the system0t

had at least as many inputs as it did states). This requirement is not

likely to be satisfied in practice. It may be possible to relax this

assumption by using the pseudoinverse. This pos-iibility is currently under

investigation.

The LQ design presumes that full state feedback is available.

In practice, this is often not the case, and the missing states must be

created by an observer. Unfortunately, when an observer is inserted in

* lthe LQ loop, all robustness and sensitivity guarantees are lost. This

makes the issue of how to adjust the LQ feedback matrix to increase robust-

ness and sensitivity properties much more important. The calculation of

-------------- ... , - ..
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the gradient with an observer in the loop is a straightforward extension 7

of the formulas for the full state feedback case. However, the effective-

ness of these formulas remains to be experimentally verified.

When white, uncorrelated Gaussian noise signals are inserted into

the system and state measurement equations of the LQ regulator, the optimal

solution is the linear-quadratic-Gaussian (LQG) controller. The controller

is just the LQ feedback matrix plus an observer whose gains depend upon a

dual Riccati equation [23]. The dual equation is a function of the noise

covariance matrices. It is possible to calculate the gradient of the

singular value functionals witri respect to these matrices using the same

type of derivation as in Section 3. This could be useful it the dominant

LQ poles are fixed by some primary design constraint. The effect of

altering the noise covariance matrices would be that the observer would no

longer provide optimal noise reduction. hence, the robustness and sensi- j
tivity properties of the LQG system could be affected at the expense of

noise performance.

In Section 4 the LQ adjustment procedure was applied to an example

to illustrate its effectiveness. In this example, the additive perturbation

was assumed to surround the plant and the controller. This assumption was

made because it makes the singular value bound simpler. If the perturbation

added directly to the nominal plant, we would have had to take the gradient

of the singular value ratio

* a(I+G B)

U(G) (5.1)

(see equation (2.19)). This would complicate the gradient calculation quite

• .1
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.P a bit. Also, this bound (5.1) is conservative, which makes it less

meaningful. However, the example showed that it was possible to increase

a(a,i,o) for w< .1 while keeping 6(G) relatively constant just using the

- gradient of a (i,o) since this gradient decoupled the motion of the singular

values. Thus, a more complicated gradient calculation of equation (5.1)

could be avoided. Note that this problem does not occur in the case of

multiplicative perturbations - the frequency plot of a(m,.,o) provides a

" direct nonconservative measure of the desired properties.

[.1

°

U
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